Verticillane and Norverticillane Diterpenoids from the Formosan Soft Coral Cespitularia hypotentaculata

by Jiun-Yang Chang^a), Mohamed H. Abd El-Razek^b), and Ya-Ching Shen^{*b})

a) Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China

b) School of Pharmacy, College of Medicine, National Taiwan University, Jen-Ai Rd. Sec. 1, Taipei 100, Taiwan, Republic of China

(phone: $+886-02-3123456$, ext 62226 ; fax: $+886-02-23919098$; e-mail: ycshen@ntu.edu.tw)

Five new diterpenes, cespihypotins $W - Z$ (1-4, resp.) and cespihypotone (5) have been isolated from the AcOEt-soluble fraction of the Formosan soft coral Cespitularia hypotentaculata. Two of them having the norverticillane skeleton, *i.e.*, 1 and 2, and the other three, $3-\overline{5}$, possessing a verticillane skeleton. The structures were established as $(+)$ - $(1\beta H,7E)$ - $6\beta,11\beta$ -dihydroxynorverticilla-4(18),7-diene-10,12-dione (1), $(+)$ - $(1\beta H,7E)$ - 6β -acetoxy-11 β -hydroxynorverticilla-4(18),7-diene-10,12-dione (2), $(-)$ -(1 β H,7E)-6 β -acetoxyverticilla-4(18),7,11-triene-10,12- γ -lactone (3), $(+)$ -(1 β H,7E)-6 β -acetoxy-10hydroxyverticilla-4(18),7,11-triene-10,12- γ -lactone (4), and (+)-(1 β H,3Z)-10 β -hydroxy-6-oxoverticilla-3,11-diene-10,12- γ -lactone (5), respectively, on the basis of 1D- and 2D-NMR spectroscopic analyses.

Introduction. – Verticillane diterpenoids have recently attracted the attention of natural product chemists due to their fundamental role in the biosynthesis of taxanes. It has been demonstrated that the cyclization mechanism from (E, E, E) -geranylgeranyl diphosphate to taxa-4,11-diene proceeds through a verticillen-12-yl carbocation intermediate [1]. Some hydroxylated verticillane derivatives have been isolated from diverse sources such as the conifer Sciadopitys verticillata [2], the dicotyledons Bursera suntui and B. kerberi [3], the soft coral Cespitularia taeniata $[4]$, and the liverworts Jackiella javanica and Jungermannia infusca [5][6]. Several polyfunctionalized derivatives of this bicyclic diterpene have also been isolated from Taxus species. Taxuspine X possesses a potent multidrug-resistance reversing activity [7]. Soft corals of the genera Cespitularia and Efflatounaria, both belong to the family Xeniidae, do not retain their structural integrity on preservation in 70% alcohol, the former genus differs from the latter by having non-retractile polyps, which are often damaged on preservation; this makes taxonomy difficult. The soft corals of the genus Cespitularia have several color variants in the southern coast of Taiwan and have been found either as a potential source of bioactive compounds or a rich source of structurally unique and biologically active secondary metabolites, especially diterpenoids with a cembrane, neodolabellane, cespitularane, or verticillane skeleton [4]. Previous studies of the soft coral *C. hypotentaculata* Roxas led to the isolation of diterpenoids with verticillane skeletons together with cespitularane contained 14-membered lactone ring between $C(10)$ and $C(12)$ [8-10]. In our continuing studies of the bioactive metabolites from the Formosan soft corals $[11-13]$, five new diterpenes, $1-5$, have been isolated from

© 2009 Verlag Helvetica Chimica Acta AG, Zürich

the AcOEt-soluble fraction of the Formosan soft coral Cespitularia hypotentaculata. Two of them having the norverticillane skeleton *i.e.*, 1 and 2, and the other three, $3-5$, possessing a verticillane skeleton. Compounds $3 - 5$ contain a y-lactone ring between $C(10)$ and $C(12)$, which is also part of a 15-membered ring. The structures were established on the basis 1D- and 2D-NMR-spectroscopic analyses.

Results and Discussion. – A combination of column chromatography on silica gel and Sephadex LH-20, and preparative HPLC of the AcOEt-soluble portion of the Formosan soft coral C. hypotentaculata furnished five new verticillane diterpenes 1–5.

Cespihypotin W (1) was isolated as a colorless amorphous solid. HR-EI-MS, ¹³C-NMR, and DEPT spectra established the molecular formula of 1 as $C_{19}H_{28}O_4$. Thus, six degrees of unsaturation were determined for 1. The IR absorptions at 3447, 1722, and 1652 cm⁻¹ were attributed to OH and ketone groups. The presence of six sp² hybridized C-atoms in the molecule, as deduced from the 13C-NMR and DEPT spectra (Table 1), corresponding to two C=C bonds, and two 1,3-dione C-atoms indicated compound 1 to be bicyclic. The ¹³C-NMR *singlet* at δ (C) 133.1 and a *doublet* at δ (C) 132.0 that was correlated in the HMBC experiment with the ¹H-NMR signal at $\delta(H)$ 5.63 (d, $J = 9.3$, 1 H) together with the vinylic Me signals at $\delta(H)$ 1.84 (s) in the ¹H-NMR spectrum and at δ (C) 17.5 (q) in the ¹³C-NMR spectrum were assigned to an (E) -trisubstituted C=C bond bearing a Me group [14]. The HMQC of $\delta(H)$ 4.85 (br. s, 1 H) and 4.95 (br. s, 1 H) with δ (C) 115.1 (t), as well as HMBC with δ (C) 144.5 (s), 38.8 (t), and 47.3 (t) indicated that 1 contained an exocyclic CH₂ group. HMQC of $\delta(H)$ 4.56 $(dt, J = 4.5, 9.3, 1 \text{ H})$ with $\delta(C)$ 70.1 (d) and HMBC with $\delta(C)$ 133.1 (s) and 144.5 (s) supported that $C(6)^1$ was hydroxylated. The geminal Me groups at $\delta(H)$ 1.50 (s) and 0.86 (s) showed HMBCs with $\delta(C)$ 46.5 (s), 43.3 (d), and the downfield tertiary alcohol C-atom at $\delta(C)$ 88.2 (s), which confirmed that 1 contained a gem-dimethyl bearing quaternary C-atom, which was adjacent to a CH C-atom, and a quaternary OH-bearing C-atom. The location of the oxo groups at $C(10)$ and $C(12)$ were assigned on the basis of the HMBCs of CH₂(9) with C(10) and of CH₂(13) with C(12). On the basis of the above data, the remaining two degrees of unsaturation suggested that compound 1 contains a bicyclic norverticillane ring similar to that previously reported for cespitularin M [10]. It was assumed that compound 1 was oxidized to a ketone at C(12) δ (C) 211.0 (s)), compared to the corresponding secondary alcohol group (δ (H) 4.10, m, $H - C(12)$ and $\delta(C)$ 77.5 (d)) in cespitularin M. The relative configuration of 1 was determined by analysis of NOESY correlations. We assume that 1 has the same absolute configuration at C(1) as other naturally occurring cespitularines and taxoids

¹⁾ Arbitrary numbering. For systematic names, see Exper. Part.

[15]. A NOESY experiment was performed to ascertain the relative configuration of $C(11)$, Me (16) , Me (17) , and $C(6)$ (*Fig. 1*). The presence of mutual correlations between $H - C(1)$ and $Me(16)$ and $Me(17)$ agreed with β -configurations for these groups, while H–C(6) had α -configuration. The β -configuration of the OH group at C(6) was confirmed by comparison of the previously reported norditerpenoid cespihypotin A [8]. Meanwhile, the broad singlet of the OH group attached to $C(11)$ showed a NOESY correlation with the α -H-atom at $\delta(H)$ 2.93–2.96 of C(13), and comparison with cespitularin M [10] confirmed the OH group should have an α orientation. Taking all these spectroscopic data into account, compound 1 was elucidated as $(+)$ -(1 β H,7E)-6 β ,11 β -dihydroxynorverticilla-4(18),7-diene-10,12-dione.

Fig. 1. Computer-generated perspective model for 1 using MM2 force field calculations and NOESY correlations

Cespihypotin X (2) gave a formula of $C_{21}H_{30}O_5$, from the interpretation of its HR-ESI-MS and ¹³C-NMR data. The NMR features (*Tables 1* and 2) of 2 were analogous to those of 1 with the exception that the resonances for the secondary OH at $C(6)^1$) were replaced by those of an AcO group. The COSY correlations from $H - C(6)$ to $H - C(5)$ and $H - C(7)$, and the HMBC correlations from $H - C(6)$ to $C(5)$, $C(7)$, $C(8)$, and the CO C-atom of $AcO-C(6)$ suggested these assignments. Thus, 2 was determined as $(+)$ - $(1\beta H,7E)$ - 6β -acetoxy-11 β -hydroxynorverticilla-4(18),7-diene-10,12-dione.

Cespihypotin Y (3) possesses the molecular formula $C_2H_{30}O_4$, as deduced from the HR-ESI-MS and 13C-NMR spectroscopic data, indicating eight degrees of unsaturation. The UV and IR spectra of 3 showed the presence of α , β -unsaturated y-lactone and CO ester functionalities, respectively. The ¹H-NMR spectrum (*Table 1*) of 3 exhibited characteristic signals including a *doublet* at $\delta(H)$ 5.37 (d, J = 8.0, 1 H), two *singlets* at $\delta(H)$ 4.81 (s, 1 H) and 4.79 (s, 1 H), a broad singlet at $\delta(H)$ 5.23, and a *doublet* of triplets at $\delta(H)$ 5.33 (dt, J = 2.5, 8.0, 1 H). The ¹³C-NMR spectrum (*Table 2*) of 3 showed signals of a conjugated ester C-atom (δ (C) 172.9), three Me C-atoms (δ (C) 34.2, 24.8, 18.1), and one quaternary C-atom at $\delta(C)$ 36.6 (C(15)¹)). The H- and C-atom

Table 1. ¹H-NMR Data (δ in ppm, *J* in Hz, 300 MHz, in CDCl₃) of Compounds $1 - 5$ Table 1. ¹H-NMR Data (δ in ppm, J in Hz, 300 MHz, in CDCl₃) of Compounds 1 -5

Position	1	$\mathbf{2}$	3	4	5
1	43.3 (d)	43.3 (d)	42.5 (d)	43.5 (d)	43.4 (d)
2	34.3 (t)	34.5 (t)	18.3 (t)	18.1(t)	16.6 (t)
3	38.3(t)	38.7 (t)	31.4 (t)	32.2 (t)	129.7 (d)
4	144.5 (s)	143.9 (s)	145.3 (s)	145.4 (s)	146.9 (s)
5	47.3 (t)	44.2 (t)	40.5 (t)	40.6 (t)	44.1 (t)
6	70.1 (d)	72.3 (d)	71.3 (d)	71.4 (d)	209.0(s)
7	132.0 (d)	127.3(d)	130.1 (d)	131.6 (d)	51.6 (t)
8	133.1(s)	135.0(s)	135.2(s)	133.3(s)	26.7(d)
9	48.5 (t)	48.5 (t)	42.2 (t)	48.5 (t)	43.3 (t)
10	206.0(s)	206.1(s)	81.8(s)	109.0(s)	109.1(s)
11	88.2(s)	88.2(s)	169.8 (s)	168.1(s)	166.0 (s)
12	211.0(s)	210.8(s)	127.1(s)	129.0 (s)	128.3 (s)
13	35.8 (t)	35.8 (t)	23.7(t)	23.7(t)	25.2(t)
14	29.3(t)	29.2(t)	31.5(t)	31.8 (t)	32.3 (t)
15	46.5 (s)	46.5 (s)	36.6(s)	37.0(s)	38.3(s)
16	24.5 (q)	24.5 (q)	24.8 (q)	24.1 (q)	24.3 (q)
17	26.0 (q)	25.9 (q)	34.2 (q)	33.9 (q)	38.3 (q)
18	115.1 (t)	115.7 (t)	114.0 (t)	114.5 (t)	24.5 (q)
19	17.5 (q)	17.6 (q)	18.1 (q)	17.1 (q)	22.6 (q)
20			172.9(s)	170.9(s)	170.4(s)
AcO		170.2 (s) , 21.2 (q)	169.9 (s) , 21.2 (q)	170.2 (s) , 21.3 (q)	

Table 2. ¹³C-NMR Data (δ in ppm, 75 MHz, CDCl₃) of Compounds $1-5^a$)

assignments were determined by COSY, HMQC, and HMBC. Detailed comparison of the ¹H- and ¹³C-NMR data (*Tables 1* and 2) with those of cespitularin O [10] revealed that compound 3 is a 6-AcO analogue of cespitularin O. A COSY correlation from CH₂(9) to H – C(10) and HMBC from CH₂(9) to C(7), C(10), C(11), and C(19) helped to ascertain this assignment. NOESY correlations of $Me(17)/H-C(10)$, $Me(19)/H$ $\rm H\!-\!C(6),$ and $\rm Me(17)/H\!-\!C(7)$ indicated $\rm Me(16),$ $\rm Me(17),$ $\rm H\!-\!C(7),$ $\rm AcO\!-\!C(6),$ and H-C(10) were on the same side of the molecule. Thus, from these data, the structure of **3** was established as $(-)$ -(1 β H,7E)-6 β -acetoxyverticilla-4(18),7,11-triene-10,12- γ -lactone.

Cespihypotin Z (4) proved to have the molecular formula $C_2H_{30}O_5$ from the HR-ESI-MS and ¹³C-NMR spectroscopic data. The NMR features (*Tables 1* and 2) of 4 showed some similarity to those of compound 3 except for the replacement of the secondary OH group at $C(10)^1$) by a tertiary alcoholic C-atom in 4. Analyses of 2D-NMR data revealed that 4 possessed the same carbocyclic skeleton as 3. However, there was a significant difference that indicated the presence of a γ -hydroxy- α , β unsaturated-y-lactone $(\delta(C) 170.9 (s), 129.0 (s), 168.1 (s), 109.0 (s))$ in 4 instead of a yhydroxymethine- α , β -unsaturated-y-lactone (δ (C) 172.9 (s), 127.1 (s), 169.8 (s), 81.8 (d)) in 3. HMBCs between Me(16), Me(17) and C(11); CH₂(13) and C(14), C(1), $C(20)$; CH₂(9) and C(10), C(11), C(8), C(7), C(19); and Me(19) and C(7), C(8), C(9) clearly positioned the γ -hydroxy- α, β -unsaturated- γ -lactone. The relative configuration of 4 was deduced from a 2D-NOESY experiment, which indicated that Me(16), $Me(17)$, $H-C(7)$, and $H-C(1)$ are on one side of the molecule, while Me(19) and $H-C(6)$ are on the opposite side of the molecule (*Fig. 2*).

Fig. 2. Computer-generated perspective model for 4 using MM2 force field calculations and NOESY correlations

Cespihypotone (5) has the molecular formula, $C_{20}H_{28}O_4$, as determined by HR-ESI-MS and NMR spectra (*Tables 1* and 2). The IR spectrum of 5 indicated the presence of a OH group at 3420 cm^{-1} and ketones at 1740 and 1705 cm⁻¹. The UV absorption at λ_{max} 235 nm suggested the presence of an α , β -unsaturated ketone. The NMR features of compound 5 were analogous to those of compound 4 except that the O-bearing CH₂ group at C(4)¹) and the olefinic Me at C(8) in 4 were replaced by a *cis* olefinic Me $(\delta(H)$ 1.72 s; $\delta(C)$ 24.5 q), a secondary Me $(\delta(H)$ 1.80, d, $J = 7.0$; $\delta(C)$ 22.6 q), and keto group at C(6) $(\delta(C)$ 209.0 s) respectively. The relative configuration of 5 was deduced from a NOESY experiment, which indicated that Me(16), Me(17), $H - C(8\beta)$, and $H - C(1)$ are on one side of the molecule. The NOESY between Me(18) and H-C(3) confirmed the (Z)-configuration at C(3)=C(4) (Fig. 3). Detailed analyses of the 1D- and 2D-NMR spectra led us assign the structure of 5 as $(+)$ - $(1\beta H,3Z)$ -10 β -hydroxy-6-oxoverticilla-3,11-diene-10,12- γ -lactone.

A plausible biogenetic pathway to compounds 1 and 2 is proposed as illustrated in the Scheme based on recently published verticillanes [11] [12]. Analogs of the precursor a , which have been recently isolated from C. hypotenculata [9] [11] are quite significant from a biogentic point of view. The nor-verticillanes 1 and 2 may be produced through decarboxyaltion, expoxidation, and hydration of precursor a. The biogentic pathway for compounds $3 - 5$ may refer to a proposed scheme published in a previous paper [12].

Fig. 3. Computer-generated perspective model for 5 using MM2 force field calculations and NOESY correlations

Experimental Part

General. Column chromatography (CC): silica gel 60 (SiO₂; Merck) and Sephadex LH-20 $(Amersham Pharmacia Biotechn AB, Uppsala, Sweden); FC = flash chromatography. Prep. TLC: pre$ coated SiO₂ plates (Merck; silica gel 60 F-254, 1 mm). Optical rotations: Jasco DIP-1000 polarimeter. UV Spectra: Hitachi U-3210 spectrometer; λ_{max} (log ε) in nm. IR Spectra : Hitachi T-2001 spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR, COSY, HMQC, HMBC, and NOESY Experiments: *Bruker FT-300*

spectrometer or *Varian Unity-Inova-500* FT-NMR spectrometers at 500 (1 H) and 125 MHz (13 C), Me₄Si as internal standard; δ in ppm, coupling constants J in Hz. EI-MS and FAB-MS: VG *Quattro 5022* mass spectrometer; in m/z (rel. %).

Animal Material. The soft coral C. hypotentaculata Roxas (Xeniidae) was collected at Green island, off the eastern coast of Taiwan, in December 2004, by scuba diving at a depth of 15 m. The fresh coral was immediately frozen after collection and kept at -20° until processed. A voucher specimen (NTUO-5) was deposited in the School of Pharmacy, College of Medicine, National Taiwan University, Taiwan.

Extraction and Isolation. The soft coral (wet, 8 kg) was extracted with CH₂Cl₂/MeOH (1:1, 3 \times 10 l) at r.t. and the extract was concentrated under vacuum. The crude extract (20 g) was partitioned between AcOEt and H₂O (1:1). The AcOEt soluble portion was subjected to FC $SiO₂$, hexane/AcOEt (100:0/ 0:100). The fraction eluted with hexane/AcOEt 4:1 was separated on Sephadex LH-20 using CH₂Cl₂/ MeOH (1:1) to furnish five fractions ($F1-F5$). This was followed by fractionation of F5 (1.3 g) by SiO₂ CC eluting gradiently with hexane/CH₂Cl₂/MeOH 100 : $0 \cdot 0 \cdot 0 \cdot 3 \cdot 1$ to give seven fractions (*F* 5-1 – *F* 5-7). F 5-3 was further subjected to separation on NP-HPLC using hexane/AcOEt 7:3 to yield $2(7 \text{ mg})$, and 3 (2 mg). While F5-5 was separated on NP-HPLC using hexane/AcOEt 5:3 to give 1 (6 mg) and 4 (6 mg) . F 5-7 was chromatographed on NP-HPLC eluted with hexane/AcOEt (3:2) to afford 5 (5 mg).

Cespihypotin W $(=(1R,4E,6S,11R)-1,6-Dihydroxy-4,15,15-trimethyl-8-methylidenebicyclo[9.3.1]$ pentadec-4-ene-2,14-dione; **1**). Colorless amorphous solid. $[\alpha]_{\rm D}^{25} = +49.4$ ($c = 0.6, \rm CH_2Cl_2$). UV (MeOH): 207 (3.18). IR (neat): 3447, 2924, 1722, 1652. ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. HR-ESI-MS: 343.1885 (C₁₉H₂₈NaO₄; 343.1884).

Cespihypotin X (= (1R,4E,6S,11R)-1-Hydroxy-4,15,15-trimethyl-8-methylidene-2,14-dioxobicy $clo[9.3.1] pentadec-4-en-6-yl$ Acetate; 2). Colorless amorphous solid. $[\alpha]_{D}^{25} = +64.4$ ($c = 0.6$, CH₂Cl₂). UV (MeOH): 206 (3.31). IR (neat): 3445, 2926, 1720, 1650. ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. HR-ESI-MS: 385.1987 ($C_{21}H_{30}NaO_5^+$; calc. 385.1991).

Cespihypotin Y (= $(5R,10S,11E,13aR)$ -2,4,5,6,7,8,9,10,13,13a-Decahydro-4,4,12-trimethyl-8-methylidene-2-oxo-3,5-ethanocyclododeca[b]furan-10-yl Acetate; **3**). Colorless amorphous solid. [a] $^{25}_{15}$ = -112.2 $(c = 0.6, CH_2Cl_2)$. UV (MeOH): 208 (3.27), 247 (3.33). IR (neat): 2940, 1720, 1654. ¹H-NMR: Table 1. ¹³C-NMR: *Table 2*. HR-ESI-MS: 381.2042 (C₂₂H₃₀NaO $_4^+$; calc. 381.2040).

Cespihypotin Z (¼(5R,10S,11E,13aR)-2,4,5,6,7,8,9,10,13,13a-Decahydro-13a-hydroxy-4,4,12-trimethyl-8-methylidene-2-oxo-3,5-ethanocyclododeca[b]furan-10-yl Acetate; 4). Colorless amorphous solid. $\left[\alpha\right]_D^{25} = +86.4$ (c = 0.6, CH₂Cl₂). UV (MeOH): 210 (3.23), 245 (3.21). IR (neat): 3410, 2945, 1734, 1652. ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. HR-ESI-MS: 397.1991 (C₂₂H₃₀NaO₅^{*}; calc. 397.1989).

 $Cespihypotone (= (5S,7Z,12S,13aR)-4,5,6,9,11,12,13,13a-Octahvdro-13a-hydrox-4,4,8,12-tetrameth$ yl-3,5-ethanocyclododeca[b]furan-2,10-dione; 5). Colorless amorphous solid. $\lbrack \alpha \rbrack_0^{25} = +68$ (c = 0.6, CH₂Cl₂). UV (MeOH): 207 (3.30), 235 (3.21). IR (neat): 3420, 2950, 1740, 1705, 1650. ¹H-NMR: Table 1. ¹³C-NMR: Table 2. HR-ESI-MS: 355.1885 ($C_{20}H_{28}NaO_4^+$; calc. 355.1883).

The authors thank the National Science Council, Taipei, Taiwan, for financial support (grant no. NSC 97-2113-M-002-016).

REFERENCES

- [1] Y. Jin, D. C. Williams, R. Croteau, R. M. Coates, J. Am. Chem. Soc. 2005, 127, 7834.
- [2] B. Karlsson, A.-M. Pilotti, A.-C. Söderholm, T. Norin, S. Sundin, M. Sumimoto, Tetrahedron 1978, 34, 2349.
- [3] J. D. Hernández-Hernández, L. U. Román-Marín, C. M. Cerda-García-Rojas, P. Joseph-Nathan, J. Nat. Prod. 2005, 68, 1598.
- [4] Y.-C. Shen, Y.-B. Cheng, J. Kobayashi, T. Kubota, Y. Takahashi, Y. Mikami, J. Ito, Y.-S. Lin, J. Nat. Prod. 2007, 70, 1961.
- [5] F. Nagashima, A. Tamada, N. Fujii, Y. Asakawa, Phytochemistry 1997, 46, 1203.
- [6] F. Nagashima, K. Kishi, Y. Hamada, S. Takaoka, Y. Asakawa, Phytochemistry 2005, 66, 1662.
- [7] M. L. Renzulli, L. Rocheblave, S. Avramova, F. Corelli, M. Botta, Tetrahedron Lett. 2004, 45, 5155.
- [8] Y.-C. Shen, J.-J. Lin, Y.-R. Wu, J.-Y. Chang, C.-Y. Duh, K. L. Lo, Tetrahedron Lett. 2006, 47, 6651.
- [9] Y.-C. Shen, Y.-R. Wu, J.-J. Lin, K.-L. Lo, Y.-C. Kuo, A. T. Khalil, Tetrahedron 2007, 63, 10914.
- [10] C.-Y. Duh, C.-H. Li, S.-K. Wang, C.-F. Dai, J. Nat. Prod. 2006, 69, 1188.
- [11] Y.-C. Shen, K.-L. Lo, Y.-H. Kuo, Y.-C. Kuo, C.-H. Chen, A. T. Khalil, J. Nat. Prod. 2008, 71, 1993.
- [12] Y.-B. Cheng, K.-L. Lo, C.-Y. Chen, A. T. Khalil, Y.-C. Shen, Helv. Chim. Acta 2008, 91, 2308.
- [13] Y.-B. Cheng, C.-Y. Chen, Y.-H. Kuo, Y. C. Shen, Chem. Biodiversity 2009, 6, 1266.
- [14] C.-Y. Duh, M.-C. Chia, S.-K. Wang, H.-J. Chen, A. A. H. El-Gamal, C.-F. Dai, J. Nat. Prod. 2001, 64, 1028.
- [15] C.-Y. Duh, A. A. H. El-Gamal, S.-K. Wang, C.-F. Dai, J. Nat. Prod. 2002, 65, 1429.

Received June 9, 2009